
 

  
Abstract—Collaboration is ubiquitous in today’s science, yet 

there is limited support for coordinating scientific work.  The 
general-purpose tools that are typically used (e.g., email, shared 
document editing, social coding sites), have still not replaced in-
person meetings, phone calls, and extensive emails needed to 
coordinate and track collaborative activities. Scientists with 
diverse knowledge and skills around the globe could collaborate 
by opening scientific processes that expose all tasks and activities 
publicly to achieve a shared scientific question. This paper 
describes the Organic Data Science framework to support 
scientific collaborations that revolve around complex science 
questions that require significant coordination, entice 
contributors to remain engaged for extended periods of time, and 
enable continuous growth to accommodate new contributors as 
the work evolves over time. We discuss how the design of this 
framework incorporates principles followed by successful on-line 
communities.  We present initial results to date of several 
communities that are collaborating using this framework.  
 

Index Terms— Computer interfaces, collaborative work, social 
computing.  

 

I. INTRODUCTION 

 
CIENTIFIC collaborations, sometimes referred to as 
“collaboratories” and “virtual organizations”, range from 

those that work closely together and others that are more 
loosely coordinated [1, 2].  Some scientific collaborations 
revolve around sharing instruments (e.g., the Large Hadron 
Collider), others focus on a shared database (e.g., the Sloan 
Sky Digital Survey), others form around a shared software 
base (e.g., SciPy), and others around a shared scientific quest 
(e.g., the Human Genome Project).  Our work focuses on 
scientific collaborations that revolve around complex science 
questions that require: 
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• Multi-disciplinary contributions, so that the 
participants belong to different communities with 
diverse practices and approaches 

• Significant coordination, where ideas, models, 
software and data need to be discussed and 
integrated to address the shared science goals 

• Engaging unanticipated participants, so that the 
collaboration can grow over time and include new 
contributors that may bring in new knowledge, skills, 
or data 

Such scientific collaborations do occur but are not very 
common.  Unfortunately, they take a significant amount of 
effort to pull together and to sustain for the usually long period 
of time required to solve the science questions. Our goal is to 
develop a collaborative software platform that supports such 
scientific collaborations, and ultimately make them 
significantly more efficient and commonplace. 

This paper presents initial results of an Organic Data 
Science framework to support scientific collaborations that 
revolve around complex science questions that require multi-
disciplinary contributions to gather and analyze data, 
significant coordination to synthesize findings, and grow 
organically to accommodate new contributors as needed as the 
work evolves over time. The design of the Organic Data 
Science framework is based on social principles derived from 
studies of successful on-line communities and collaborative 
projects where members work closely together towards a 
common goal.  There have been many studies of on-line 
communities [3], notably on Wikipedia. Our work builds on 
the social design principles uncovered by this research, as well 
as other projects that have successful close collaborations on-
line.  The design of the user interface incorporates those social 
design principles and to support features that target specific 
aspects of collaborative work [4, 5].  The framework is an 
extension of a semantic wiki platform [15], where the 
semantic properties of tasks and other entities (people, 
datasets, software) are used to organize the content and the 
activities in the collaboration [6].  The Organic Data Science 
framework is being used by several communities.  This paper 
presents an initial analysis of their characteristics, such as the 
growth of the communities, the interactions occurring in them, 
and the kinds of activities that the users are engaging in.  The 
framework is still under development, and it evolves to 
accommodate user feedback and to incorporate new 
collaboration features.   
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The main contributions of this paper are the social and 
community aspects of our Organic Data Science framework.  
First, it describes in detail the social design principles that 
guide its design.  Second, it provides an initial report on the 
collaborative activities of a few communities that are currently 
using it. 

The paper starts with a discussion of the kinds of 
collaboration that we target, introducing the notion of a meta-
workflow in scientific collaborations and how collaborative 
meta-workflows are supported in an Organic Data Science 
framework.  It then describes the social principles that are the 
basis for the design of the framework, and how they are 
incorporated into our current implementation.  Finally, it 
presents an initial analysis of its use in several science 
communities.  

II. LAYERS OF COLLABORATION 
Collaboration in science is ubiquitous and occurs at many 
levels.  We are specifically interested in supporting 
collaboration that is grounded on computational aspects of 
data science.  That is, collaboration activities whose goal is to 
develop computational methods for data analysis in order to 
answer science questions that require assembling data, 
software, and expertise that come from a diverse group of 
scientists. We refer to this kind of collaboration as 

computationally-grounded collaboration.  A key feature of 
this kind of collaboration is that it is driven by goal-oriented 
activity, that is, the collaboration has a purpose to accomplish 
a joint computational goal, and the collaborative activities 
have an end result that is a solution to accomplish that goal.   

We have observed computationally-grounded collaboration 
in three different realms, illustrated in Figure 1: 

1. Workflow creation activities: In our prior work on 
computational workflows [34, 35], we observed that 
workflows often amalgamate the expertise of several 
scientists, and are often collaboratively developed.  For 
example, some scientists may have skills on how to 
interpret and integrate particular kinds of data, others on 
statistical techniques to do quality control of the data 
(e.g., data that is coming from noisy sensors), others may 
understand how to apply a particular physics model, and 
others may contribute statistical techniques to detect 
particular types of patterns in the data.  These activities 
result in a computational workflow that implements a data 
analysis method.  These activities are generally supported 
by workflow systems [7, 8, 9], although the collaborative 
aspects of workflow design are often not explicitly 
supported [10]. In our work, we use the WINGS 
workflow system1 and have extended it to support the 

 
1 http://www.wings-workflows.org 

 

 
Fig. 1.  Major realms of computationally-grounded collaboration. 

  



 

exchange of partially-developed workflows across users, 
but more work needs to be done to integrate issue tracking 
and versioning.  Workflow creation activities are 
illustrated in the middle portion of the figure.  
Computationally speaking, workflows can be represented 
as directed graphs, and the dependencies expressed in the 
workflow tend to mirror the dependencies among the 
scientists involved in the collaboration. 

2. Coding activities: A separate realm for collaboration is in 
the development of software.  In this realm, scientists 
work on finding relevant software that may have been 
previously developed, extending a particular 
implementation, resolving bugs, and developing new code 
to address a specific need. These activities are illustrated 
in the bottom of the figure.  Code sharing sites (e.g., 
GitHub2) are well suited to support these kinds of 
activities.  In separate research, we are designing 
complementary scientist-centered software registries to 
support some of these activities, in particular for 
geosciences software as part of the OntoSoft project3. The 
resulting codes are used to implement some part of an 
overall workflow.  These collaborative activities may be 
top-down when driven by a target workflow, and bottom-
up when the existence of software determines the 
feasibility and design of a workflow.  In this realm, the 
activities are generally driven by separate issues that are 
eventually resolved, so computationally speaking the 
collaborative activities tend to resemble a task forest of 
what we would call issue-tracking workflows. 

3. Meta-workflow design activities: A third realm for 
collaboration focuses on the activities that lead to the 
requirements for the workflows themselves.  Examples of 
such activities in this context include agreeing to a joint 
question, developing strategies to address that question, 
figuring out whether there is data and software available 
to address that question, investigating how to get that data 
and software, and positing alternative versions of the 
question to workaround inaccessible data or software.  
These activities can be seen as meta-workflow design 
activities, because they lead to sketching out a high-level 
workflow (or workflows) to address that question (or 
questions) which is then implemented as a computational 
workflow.  Alternatively these activities may be guided 
bottom-up when the availability of a workflow may 
prompt scientists to pose a question that can be answered 
by that workflow.  These meta-workflow design activities 
are illustrated at the top of the figure.  Computationally 
speaking, these activities tend to be organized as a 
hierarchical task network [11], where each task is 
decomposed into subtasks assigned to subsets of those 
involved in the collaboration [12, 13, 14].  

This paper focuses on supporting scientific collaborations 
that involve meta-workflow design activities.  These activities 
are generally not supported appropriately by collaboration 
tools, and tend to be done through general-purpose platforms 
such as email and shared document editing.  They also tend to 

 
2 http://www.github.com 
3 http://www.ontosoft.org 

rely heavily in in-person communication. Therefore, scientific 
collaborations tend to be very time-consuming and have a very 
high communication cost.  Reducing the effort needed for this 
level of collaboration could allow scientists to do research 
faster.  We also believe that scientists are often deterred from 
undertaking complex research questions that would result in 
overhead that is unmanageable with the general-purpose 
platforms that they currently use. 

We believe that the separations across these realms are due 
in part to the diverse nature of the shared goals and activities, 
but more importantly they are often separate activities because 
the tools that support them are not well integrated.  A more 
fluid flow of information across these levels would also 
improve the efficiency of scientific collaborations. 

III. ORGANIC DATA SCIENCE 
Computationally-grounded collaboration occurs at several 
levels, from high-level meta-workflow design to determine 
what scientific problem to solve and how, to workflow 
creation to select the data and analytic software to be used, to 
coding activities to implement the software needed.  The focus 
of this work is the former, that is, the collaboration that occurs 
when scientists are working together to agree on a problem to 
solve and a strategy to solve it.  Eventually, a workflow is 
chosen with appropriate data and software, and run to obtain 
results that address the original problem.  A challenging aspect 
of these collaborations is that they are often supported by 
general tools that are not well integrated.  For example, a 
common situation would be that some discussions take place 
over emails, others through shared on-line documents, and 
others occur face to face.  Another challenge is that different 
members of the collaboration participate in different activities, 
making it hard for everyone to have the information they need.  
For example, the more senior people with the broader vision 
for a project may participate in face to face meetings only, 
while post-doctoral researchers may be more involved in the 
emails and other routine discussions with limited visibility on 
the general strategy, and the students that do the detailed work 
do not have much understanding of the project outside of their 
particular scope of work. This situation makes collaborations 
very inefficient: there can be misunderstandings (e.g., some 
solution may be implemented that does not take into account 
some longer later goal), communication overhead (e.g. having 
to transmit to different students at different stages in different 
organizations), and limited experiences for the younger 
members of the collaboration (in terms of the credit they get, 
the training they receive, etc).  Finally, these collaborations 
are often across institutions and span long periods of time, 
making it hard for everyone to track what is happening, who is 
doing what and when, and most importantly to remember 
exactly what was done once the work is ready for publication.  
This makes it especially challenging for newcomers to come 
up to speed and understand how to contribute.  The 
documentation for these collaborations is scattered in 
everyone’s notes and emails (some people may have moved 
on and may not be available to provide details), which 
severely limits the ability of the group and certainly of others 
to reproduce and build on the work done.  



 

We are developing a novel approach called organic data 
science to support these meta-workflow design collaborations.  
Organic data science captures all the activities, their 
participants, and associated documents in an open framework 
that is centered on tasks.  Everyone involved in the 
collaboration has visibility on all other activities and can 
contribute to them as needed.  Newcomers can view what 
tasks are being pursued by the collaboration and quickly come 
up to speed and contribute.   

The Organic Data Science framework supports these 
collaborations. The framework is implemented as an extension 
of a semantic wiki [15] to organize all the information relevant 
to the collaboration [6].  The framework is heavily influenced 
by principles extracted from social science studies of diverse 
on-line collaborations, whether scientific in nature or not, 
particularly those driven by joint tasks and goals. These 
principles drive the design of the user interface [4].  They also 
support the virtual community by fostering self-organization, 
sustainability, and open dissemination [5].  The next section 
describes these principles in detail.   

IV. SOCIAL DESIGN PRINCIPLES FOR ORGANIC DATA 
SCIENCE 

There are numerous studies about successful on-line 
communities [3]. Many studies are focused on Wikipedia and 
other wiki-style frameworks, with topics as varied as the 
design of the editorial process [16], community composition 
and activities [17], incentives to contributors [18, 19], critical 
mass of contributors [20], coordination across contributions 
[21], group composition [22], conflict [23], trust [24], and user 
interaction design [25].  These studies suggest a number of 
principles for the design of our on-line collaboration 
framework.   

Figure 2 summarizes the social principles that we are using 
in our approach.  We follow the organization used in [3], but 
we focus here on social principles that are relevant to early 
stages of the community, and leave out more advanced 
principles (e.g., for retention of members and for regulating 
behavior).  Additional social principles are outlined in Figure 
3  and represent the best practices and lessons learned from 
two projects that are applicable to our work.  The rest of this 
section describes briefly all these principles to motivate the 
design of the system and the communities around it. 
Starting Communities 
Starting a community is challenging, and many on-line 
communities never take off. First, the community must co-
habitate with the ecosystem of already existing sites.  There 
are lots of web sites relevant to any given area, so it is 
important to identify the particular niche that the ODS 
community will cover and describe its scope up front relating 
it to other sites. The scope should be described in terms of 
topics to be covered, target members, activities, and purpose. 
The ODS site cannot be isolated, instead its content should be 
integrated with those other related sites when possible.  
Second, members and content should be organized into 
subspaces in order to facilitate the formation of communities 
of interest, form their identity based on the content they 
contribute, and facilitate their interactions.  Third, the planned 
timespan of activities should be clearly marked and active 

tasks should be brought to the forefront, so that activity in the 
community can be easily conveyed to a visitor.  Activities that 
are planned for the future should be annotated with the 
expected timeframe for their activation and target end dates, 
so members understand the overall plans for the community 
activities.  Finally, creating mechanisms to match people to 
ongoing activities, perhaps by suggesting to them subspaces 
where colleagues with similar interests are participating.  
These principles have been found to facilitate the creation of a 
critical mass for jumpstarting a core community. 
Encouraging Contributions through Motivation 
Once there is a critical mass of core members, motivating 
contributors to add content becomes critical.  First, the ODS 
site should point out to contributors what is needed, for 
example by highlighting what content is needed or by asking 
specific people for concrete content based on what they have 
contributed before.  Second, carving out smaller tasks makes it 
easier for people to volunteer.  Large or challenging tasks 
should be decomposed into smaller ones so they are more 
achievable piecemeal by different contributors.  Specifying the 
expected end date for a task also helps convey the scope of the 
commitment to the contributors considering taking it on. 
Second, positive feedback and encouragement go a long way.  
Requests for contributions coming from leaders of the project 
are most effective.  Frequent feedback about the value of the 
contributions is also helpful, particularly if it is positive and 
not just guidance or critiques.  Concrete rewards for 
accomplishments, i.e., not just for signing up but for finishing 
a task), are also very effective even if very small or intangible.  
Third, peer pressure is very effective.  Publicizing what others 
have accomplished and that they complied with their 
commitments sets a certain tone in the collaboration that 
stimulates contributions.  Finally, people are more likely to 
contribute if they understand that their personal expertise is 
needed for the task and they have a commitment to the success 
of the group. 
Encouraging Commitment 
The sustainability of the community is important, so strategies 
for encouraging long-term commitment are crucial to the 
success of an on-line community.  Helping people connect as a 
subgroup helps connect individuals to the community by 
identifying with that subgroup.  Subgroups should have their 
own identity, e.g., a name or tagline, and a clear relationship 
to the larger group.  The goals of a subgroup should be clear 
with respect to the goals of the overall community.  Their 
purpose should be also explicit, so the subgroup is not just an 
abstract entity but has reasons to interact and work together 
towards a common goal.  Finally, interdependent tasks 
increase commitment and at the same time reduce conflict 
among contributors. 
Attracting and Engaging Newcomers 
The sustainability of a community is also ensured through its 
growth.  Therefore, attracting and engaging newcomers is 
crucial to the success of an on-line community. First, a most 
effective way to engage new members is to have current 
members approach their colleagues. Second, there should be a 
point  person(s)  appointed to  have  the  first  interactions with 



 

 

 

A.   Starting communities 
A1. Carve a niche of interest, scoped in terms of topics, members, activities, and purpose  
A2. Relate to competing sites, integrate content  
A3. Organize content, people, and activities into subspaces once there is enough activity  
A4. Highlight more active tasks  
A5. Inactive tasks should have “expected active times”  
A6. Create mechanisms to match people to activities  

 
B.   Encouraging contributions through motivation 
B1. Make it easy to see and track needed contributions  
B2. Ask specific people on tasks of interest to them  
B3. Simple tasks with challenging goals are easier to comply with  
B4. Specify deadlines for tasks, while leaving people in control  
B5. Give frequent feedback specific to the goals   
B6. Requests coming from leaders lead to more contributions  
B7. Stress benefits of contribution   
B8. Give (small, intangible) rewards tied to performance (not just for signing up)  
B9. Publicize that others have complied with requests  
B10. People are more willing to contribute: 1) when group is small,  

2) when committed to the group, 3) when their contributions are unique  
 

C.  Encouraging commitment 
C1. Cluster members to help them identify with the community  
C2. Give subgroups a name and a tagline  
C3. Put subgroups in the context of a larger group  
C4. Make community goals and purpose explicit  
C5. Interdependent tasks increase commitment and reduce conflict  

 
D.  Dealing with newcomers 
D1. Members recruiting colleagues is most effective  
D2. Appoint people responsible for immediate friendly interactions  
D3. Introducing newcomers to members increases interactions  
D4. Entry barriers for newcomers help screen for commitment  
D5. When small, acknowledge each new member  
D6. Advertise members particularly community leaders, include pictures  
D7. Provide concrete incentives to early members   
D8. Design common learning experiences for newcomers  
D9. Design clear sequence of stages to newcomers  
D10. Newcomers go through experiences to learn community rules  
D11. Provide sandboxes for newcomers while they are learning  
D12. Progressive access controls reduce harm while learning  
 
Fig. 2.  Selected social principles from [3] for building successful online communities that can be applied to the Organic 
Data Science framework.  We focus on social principles that are relevant to early stages of the community, and leave out 
more advanced principles (e.g., for retention of members and for regulating behavior).  
 

 
E.  Best practices from Polymath 
E1. Permanent URLs for posts and comments, so others can refer to them 
E2. Appoint a volunteer to summarize periodically 
E3. Appoint a volunteer to answer questions from newcomers 
E4. Low barrier of entry: make it VERY easy to comment 
E5. Advance notice of tasks that are anticipated 
E6. Keep few tasks active at any given time, helps focus 

 
F.  Lessons learned from ENCODE 
F1. Spine of leadership, including a few leading scientists and 1-2 operational project managers, that resolves complex scientific and  

social problems and has transparent decision making 
F2. Written and publicly accessible rules to transfer work between groups, to assign credit when papers are published, to present the work 
F3. Quality inspection with visibility into intermediate steps 
F4.  Export of data and results, integration with existing standards 
  

Fig. 3.  Selected best practices from the Polymath project [26] and lessons learned from ENCODE [27] that guided the 
design of our Organic Data Science framework.   



 

new members, addressing their questions and helping until 
they see some examples of how things work.  Introducing 
them to other members also helps them to be engaged.  Third, 
some initial barriers should be put in place, just to ensure that 
if a newcomer overcomes those barriers they are inclined to 
contribute in principle and the investments made in them will 
not be wasted.  Fourth, announcements about new members 
should be disseminated to the community, with pictures and 
personal background information.  Announcements coming 
from community leaders help new members understand where 
direction for the collaboration is coming from and how. Fifth, 
providing incentives to early members is important since 
many of the principles just mentioned are harder to 
accomplish for a community of very small size.  Sixth, 
designing common learning experiences for newcomers helps 
them feel that they have earned their right to be part of the 
community and they have been given training so they can feel 
empowered to contribute from the beginning.  Offering 
sandboxes where they can do initial practices is also very 
helpful.  It also helps to have a clear articulation of community 
rules, and the stages for newcomers to go through in order to 
become full-fledged members.  Throughout these stages, 
members should be given more privileges and control over the 
system. 
Best Practices from Polymath  
We find inspiration in the Polymath project, set up to 
collaboratively develop proofs for mathematical theorems  
[26, 28], where professional mathematicians collaborate with 
volunteers that range from high-school teachers to engineers 
to solve mathematics conjectures. The collaboration is 
centered around tasks, that contributors create, decompose, 
reformulate, and resolve.  This project uses common Web 
infrastructure for collaboration, interlinking public blogs for 
publishing problems and associated discussion threads [29] 
with wiki pages that are used for write-ups of basic 
definitions, proof steps, and overall final publication [30]. 
Interactions among contributors to share tasks and discuss 
ideas are regulated by a simple set of guidelines that serve as 
social norms for the collaboration [31]. The growth of the 
community is driven by the tasks that are posted, as tasks are 
decomposed into small enough chunks that potential 
contributors can see a way to contribute. 
Lessons Learned from ENCODE  
Another project that has exposed best practices of a large 
collaboration is ENCODE [32, 27].  In ENCODE, the tasks 
that are carved out for each group in the collaboration are 
formally assigned since there is funding allocated to the tasks.    
In addition the collaboration members are selected 
beforehand.  Despite these differences with our project, we 
share the explicit assignment of tasks in service of science 
goals. 

V. COLLABORATING WITH THE ORGANIC DATA SCIENCE 
FRAMEWORK  

Our Organic Data Science framework is designed to 
incorporate the social principles described in the prior section. 
Figure 4 shows a snapshot of the user interface, illustrating 
task decomposition (left and top right), task metadata (center 
right) such as participants and start/end times, and task 

documentation (bottom right) which includes semantic 
properties of tasks (not shown in the figure). We describe 
elsewhere how each of the social design principles influenced 
the design of specific features of the user interface [4, 5], and 
how the framework extends and uses a semantic wiki platform 
[6], in particular Semantic MediaWiki [15], to allow users to 
create structured representations of tasks and other entities 
(datasets, people, software) relevant to the collaboration. 

The software is open source4 and can be forked on GitHub 
to create a new community. New created communities should 
be registered to create a central list of existing communities. 
Communities 
Several communities are currently using the Organic Data 
Science framework.  The major use of our framework is by a 
community of hydrologists and limnologists that are studying 
the age of water (AoW) in an ecosystem.  This involves 
determining the concentrations of water isotopes at different 
locations as water flows over time.  They are the main driver 
for the development of the Organic Data Science framework, 
and the AoW site initially included activities that span both 
topics. As the community evolved, it was eventually split into 
two separate sites (AoW and ODSF). 

Another community is the ENIGMA consortium for 
neuroimaging genetics5.  This consortium includes more than 
70 institutions that collaborate to do joint neuroscience 
studies. The institutions keep their data locally, but they all 
agree to the method and software to be used to analyze their 
data.  They organize themselves into working groups, each 
group studies a particular disease (e.g., autism) and cohort 
(e.g., children.)  The leads of the consortium are interested in 
using the Organic Data Science framework to track what 
institutions participate in what study, the characteristics of 
their datasets, and the point person in that institution for each 
particular study. A requirement of this group is that some 
information needs to remain private to outsiders, and other 
information can only be shared between each institution and 

 
4 https://github.com/IKCAP/organicdatascience 
5 http://enigma.ini.usc.edu/publications/the-enigma-consortium-in-review/ 

 
 

Fig. 4.  Sample task page from the AoW community. 



 

the lead organization.  As a result, they have set up two 
separate sites: ENIGMA-LEADS and ENIGMA-ALL.  Both 
sites are referred to here as ENIGMA. 

Another community is a group of geoscientists working 
together to publish a special issue of a journal composed of 
geoscience papers of the future (GPF). All the articles will 
follow a similar format in that they publish explicitly all 
datasets, software, and workflows used to generate the results 
in the paper.  The site is being used to coordinate the activities 
involved in tracking the status of each paper, and to compare 
the approaches in different papers.   

We have also set up a site for training new users of the 
Organic Data Science framework regardless of their home 
community (ODST).  All new users are given a pre-defined set 
of tasks each involving learning about some aspect of the 
framework. This gives them the ability to use this new system 
in a practice setting, following one of the social principles 
described earlier for newcomers.  As they practice, they can 
create their own tasks and add themselves as participants of 
other tasks. 

In the rest of the section we present a brief and preliminary 
analysis of the initial data that we have available from these 
communities that are still in initial formation stages.  The data 
is sensitive in nature and is not publicly released.  The 
software to gather, analyze, and visualize data for an Organic 
Data Science site is part of the framework software release4. 
Preliminary Analysis 
Each Organic Data Science community has a dashboard that is 
publicly accessible and shows aggregate data about the 
collaboration.  It includes collaboration graphs generated from 
the task metadata properties that link tasks and users. We call 
these graphs social task networks [33], where each user is a 
node in the graph and the links indicating whether two users 
have a task in common (i.e., being either owner or 
participant).  The thickness of a link indicates how many tasks 
the two users have in common.  

Figure 5 illustrates the evolution of one of the communities 
(GPF) by showing the social task network at four different 
points in time. The GPF community was seeded with five 
organizers of the special issue (3a).  The organizers shared 
different sets of tasks involved in planning the special issue.  
One of the organizers served as the host for the authors (3b).  
The authors shared more and more tasks as the collaboration 
progressed (3c).  Eventually, the members of the community 
shared different amounts of tasks (3d), so the thickness of the 
lines is more pronounced in the final graph.   We describe in 
[Gil et al 2015b] the evolution of the AoW and ODSF 
communities, starting from a single site where two distinct 
subgraphs can be seen in the social task network and later two 
distinct (but overlapping) communities working in two 
separate sites. 

Figure 6 shows some of the data about the tasks.  The tasks 
hierarchies tend to be shallow (3 to 5 nodes deep) and have in 
some cases hundreds of nodes.  The figure also shows the 
social task network, which illustrates the number of users and 
the strength of the connections among them through the 
number of tasks they share.  Note that all the sites have many 
more users, but they are not shown here because they are not 
so strongly connected to others through their tasks. 

Table 1 gives a summary of the metadata for the tasks in the 
different communities.  We show the summary for all the 
tasks, and then we show the data for tasks that have 
incomplete metadata (participants, owner, start/end dates, the 
type, and expertise required) and then the tasks with complete 
metadata.  The average length of the tasks, the amount of 
participants per task, and the task type (indicating high- mid- 
or low-level task) vary across the different collaborations.  
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Fig. 5. Evolution of the collaboration in the GPF community 



 

 

 
Fig. 6.  Characteristics	  of	  tasks	  in	  different	  Organic	  Data	  Science	  communities. 



 

 

 
 

Table. 1.  Analysis of task metadata for different Organic Data Science communities. 
  



 

The average time between start and target date of tasks is 
approximately 32 days. The minimum and maximum values 
occur in the ODST community where the average task time is 
only 2.6 days, and in the ODSF community where the average 
task time is approximately 99 days. We believe that the high 
difference between the communities is related to the evolution 
of every community. The task structure of a community 
evolves over time, at the beginning many siblings’ tasks are 
created that are grouped later into more abstract tasks with a 
deeper nested structure, the average task time increases.  

VI. CONCLUSIONS 
This paper presented the social aspects of the Organic Data 
Science framework to support computationally-grounded 
scientific collaboration focused on meta-workflow design that 
leads to computational workflows. We discussed the social 
design principles coming from studies of on-line collaboration 
that we found relevant to this kind of scientific collaboration.  
The paper also presented preliminary data on the different 
communities that are currently using the framework.  These 
data show that the collaborations are active and the 
communities are growing over time.   

In future work, we plan to do a formal evaluation to assess 
how the framework supports scientific collaboration and 
whether it increases productivity and community growth. We 
continue to improve and extend the framework based on new 
requirements and feedback from the different communities. 

ACKNOWLEDGEMENTS 
We gratefully acknowledge support from the US National Science 
Foundation with awards IIS-1344272 and ICER-1440323.  We would 
like to thank other members of the Organic Data Science project, in 
particular Jordan Read. We would also like to thank the early 
adopters of the Organic Data Science framework for their feedback 
and comments on this work. 

REFERENCES 
[1] D. Ribes, and T. A. Finholt. "The long now of infrastructure: 

Articulating tensions in development." Journal for the Association of 
Information Systems (JAIS): Special issue on eInfrastructures 10(5): 
375-398, 2009. 

[2] N. Bos, A. Zimmerman, J. S. Olson, J. Yew, J. Yerkie, E. Dahl, and G. 
M. Olson. “From Shared Databases to Communities of Practice: A 
Taxonomy of Collaboratories.” Journal of Computer-Mediated 
Communication 12(2): 652-672 (2007). 

[3] R. E. Kraut, and P. Resnick “Building Successful Online Communities: 
Evidence-Based Social Design.”.  MIT Press, 2011. 

[4] F. Michel, Y. Gil, V. Ratnakar, and M. Hauder. "A Task-Centered 
Interface to On-Line Collaboration in Science." Proceedings of the ACM 
Conference on Intelligent User Interfaces (IUI), 2015.  

[5] F. Michel, Y. Gil, and M. Hauder. “A Virtual Crowdsourcing 
Community for Open Collaboration in Science Processes.” Submitted to 
the Americas Conference on Information Systems (AMCIS), 2015.   

[6] Y. Gil, F. Michel, V. Ratnakar, J. Read, M. Hauder, C. Duffy, P. 
Hanson, and H. Dugan. "Supporting Open Collaboration in Science 
through Explicit and Linked Semantic Description of Processes." 
Proceedings of the European Semantic Web Conference (ESWC), 2015.  

[7] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. 
Mehta, K. Vahi, B. Berriman, J. Good, A. Laity, J. Jacob, and D. Katz. 
"Pegasus: A framework for mapping complex scientific workflows onto 
distributed systems.” Scientific Programming, 13(3), 2005.  

[8] B. Ludaescher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, 
E. A. Lee, J. Tao, and Y. Zhao. “Scientific workflow management and 
the Kepler system.” Concurrency and Computation: Practice and 
Experience. Volume 18. 2006. 

[9] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and 
Huy T. Vo. “VisTrails: Visualization meets Data Management.” 
Proceedings of ACM SIGMOD 2006. 

[10] J. Freire, and C. Silva. “Towards Enabling Social Analysis of Scientific 
Data.” Proceedings of CHI Social Data Analysis Workshop, 2008. 

[11] M. Ghallab, Da. Nau, and P. Traverso.  Automated Planning: Theory & 
Practice.  Morgan Kaufmann, 2004. 

[12] M. A. Britt, and A. A. Larson. “Constructing Representations of 
Arguments”, Journal of Memory and Language, 48, 2003. 

[13] C. M. Pietras, and B. G. Coury. “The Development of Cognitive Models 
of Planning for Use in the Design of Project Management Systems.” 
International Journal of Human-Computer Studies, Vol 40, 1994. 

[14] J.J.G. Van Merriënboer. “Training Complex Cognitive Skills: A Four-
Component Instructional Design Model for Technical Training.“ 
Educational Technology Pubns 1997. 

[15] M. Krötzsch, and D. Vrandecic. Semantic MediaWiki. Foundations for 
the Web of Information and Services 2011: 311-326. 

[16] D. Spinellis, and P. Louridas. “The Collaborative Organization of 
Knowledge.”  Communications of the ACM, August 2008.  

[17] Y. Gil, and V. Ratnakar. “Knowledge Capture in the Wild: A 
Perspective from Semantic Wiki Communities.” Seventh ACM 
International Conference on Knowledge Capture (K-CAP), 2013. 

[18] A. Mao, E. Kamar, Y. Chen, E. Horvitz, M. E. Schwamb, C. J. Lintott, 
and A. M. Smith. “Volunteering Versus Work for Pay: Incentives and 
Tradeoffs in Crowdsourcing.” HCOMP 2013. 

[19] J. Leskovec, D. Huttenlocher, and J. Kleinberg. „Governance in Social 
Media: A case study of the Wikipedia promotion process.”  Proceedings 
of the International Conference on Weblogs and Social Media, 2010. 

[20] D. R. Raban, M. Moldovan, and Q. Jones. “An empirical study of 
critical mass and online community survival.” Proceedings of the ACM 
conference on Computer supported cooperative work, 2010. 

[21] A. Kittur, B. Lee, and R. E. Kraut. “Coordination in collective 
intelligence: the role of team structure and task interdependence.” 
Proceedings of the 27th international conference on Human factors in 
computing systems, 2009. 

[22] S. K. Lam, J. Karim, and J. Riedl. “The effects of group composition on 
decision quality in a social production community.” Proceedings of the 
16th ACM international conference on supporting group work, 2010.  

[23] A. Kittur, and R. E. Kraut. “Beyond Wikipedia: coordination and 
conflict in online production groups.” Proceedings of the 2010 ACM 
conference on Computer supported cooperative work, 2010.. 

[24] D. L. McGuinness, H. Zeng, P. Pinheiro da Silva, L. Ding, D. 
Narayanan, and M. Bhaowal. “Investigations into Trust for 
Collaborative Information Repositories: A Wikipedia Case Study.” 
Workshop on Models of Trust for the Web, 2006. 

[25] R. Hoffmann, S. Amershi, K. Patel, F. Wu, J. Fogarty, and D. S. Weld. 
“Amplifying community content creation with mixed initiative 
information extraction.” Proceedings of the 27th international 
conference on human factors in computing systems, 2009. 

[26] M. Nielsen. “Reinventing Discovery.” Princeton University Press, 2011.  
[27] Nature, Special Issue on the ENCODE project, 6 September 2012. 
[28] T. Gowers.  “Is Massively Collaborative Mathematics Possible?” 

Retrieved 23 July 2015 from 
http://gowers.wordpress.com/2009/01/27/is-massively-collaborative-
mathematics-possible 

[29] M. Nielsen.  “The Polymath Wiki.” Retrieved 23 July 2015 from 
http://michaelnielsen.org/polymath1. 

[30] T. Gowers.  “The Polymath Project.“  Retrieved 23 July 2015 from 
http://polymathprojects.org 

[31] T. Gowers. “General Polymath Rules.” Retrieved 23 July 2015 from 
http://polymathprojects.org/general-polymath-rules 

[32] E. Birney. “Lessons for big data projects.” Nature, Special Issue on the 
ENCODE project, 6 September 2012. 

[33] Y. Gil, V. Ratnakar, T. Chklovski, P. Groth, and D. Vrandecic. 
“Capturing Common Knowledge about Tasks: Intelligent Assistance for 
To Do Lists.” ACM Transactions on Interactive Intelligent Systems, 
2(3). 2012. 

[34]  Y. Gil, V. Ratnakar, J. Kim, P. González-Calero, P. Groth, J. Moody, 
and E. Deelman. “WINGS: intelligent workflow-based design of 
computational experiments.” IEEE Intelligent Systems 26 (1). 2011. 

[35] Y. Gil, P.A. Gonzalez-Calero, J. Kim, J. Moody, and V. Ratnakar. “A 
Semantic Framework for Automatic Generation of Computational 
Workflows Using Distributed Data and Component Catalogs.” Journal 
of Experimental and Theoretical Artificial Intelligence, 23 (4), 2011. 


